[−][src]Struct hibitset::BitSet
A BitSet
is a simple set designed to track which indices are placed
into it.
Note, a BitSet
is limited by design to only usize**4
indices.
Adding beyond this limit will cause the BitSet
to panic.
Methods
impl BitSet
[src]
pub fn new() -> BitSet
[src]
Creates an empty BitSet
.
pub fn with_capacity(max: u32) -> BitSet
[src]
Creates an empty BitSet
, preallocated for up to max
indices.
pub fn add(&mut self, id: u32) -> bool
[src]
Adds id
to the BitSet
. Returns true
if the value was
already in the set.
pub fn remove(&mut self, id: u32) -> bool
[src]
Removes id
from the set, returns true
if the value
was removed, and false
if the value was not set
to begin with.
pub fn contains(&self, id: u32) -> bool
[src]
Returns true
if id
is in the set.
pub fn contains_set(&self, other: &BitSet) -> bool
[src]
Returns true
if all ids in other
are contained in this set
pub fn clear(&mut self)
[src]
Completely wipes out the bit set.
pub const BITS_PER_USIZE: usize
[src]
How many bits are in a usize
.
This value can be trivially determined. It is provided here as a constant for clarity.
Example
use hibitset::BitSet; assert_eq!(BitSet::BITS_PER_USIZE, std::mem::size_of::<usize>()*8);
pub fn layer0_as_slice(&self) -> &[usize]
[src]
Returns the bottom layer of the bitset as a slice. Each bit in this slice refers to a single
Index
.
The slice's length will be at least the length needed to reflect all the 1
s in the bitset,
but is not otherwise guaranteed. Consider it to be an implementation detail.
Example
use hibitset::BitSet; let index: u32 = 12345; let mut bitset = BitSet::new(); bitset.add(index); // layer 0 is 1:1 with Indexes, so we expect that bit in the slice to be set let slice = bitset.layer0_as_slice(); let bit_index = index as usize; // map that bit index to a usize in the slice and a bit within that usize let slice_index = bit_index / BitSet::BITS_PER_USIZE; let bit_at_index = bit_index % BitSet::BITS_PER_USIZE; assert_eq!(slice[slice_index], 1 << bit_at_index);
pub const LAYER1_GRANULARITY: usize
[src]
How many Index
es are described by as single layer 1 bit, intended for use with
BitSet::layer1_as_slice()
.
BitSet
s are defined in terms of usize
s summarizing usize
s, so this value can be
trivially determined. It is provided here as a constant for clarity.
Example
use hibitset::BitSet; assert_eq!(BitSet::LAYER1_GRANULARITY, BitSet::BITS_PER_USIZE);
pub fn layer1_as_slice(&self) -> &[usize]
[src]
Returns the second layer of the bitset as a slice. Each bit in this slice summarizes a
corresponding usize
from layer0
. (If usize
is 64 bits, bit 0 will be set if any
Index
es 0-63 are set, bit 1 will be set if any Index
es 64-127 are set, etc.)
BitSet::LAYER1_GRANULARITY
reflects how many indexes are summarized per layer 1 bit.
The slice's length is not guaranteed, except that it will be at least the length needed to
reflect all the 1
s in the bitset.
Example
use hibitset::BitSet; let index: u32 = 12345; let mut bitset = BitSet::new(); bitset.add(index); // layer 1 summarizes multiple indexes per bit, so divide appropriately let slice = bitset.layer1_as_slice(); let bit_index = index as usize / BitSet::LAYER1_GRANULARITY; // map that bit index to a usize in the slice and a bit within that usize let slice_index = bit_index / BitSet::BITS_PER_USIZE; let bit_at_index = bit_index % BitSet::BITS_PER_USIZE; assert_eq!(slice[slice_index], 1 << bit_at_index);
pub const LAYER2_GRANULARITY: usize
[src]
How many Index
es are described by as single layer 2 bit, intended for use with
BitSet::layer2_as_slice()
.
BitSet
s are defined in terms of usize
s summarizing usize
s, so this value can be
trivially determined. It is provided here as a constant for clarity.
Example
use hibitset::BitSet; assert_eq!(BitSet::LAYER2_GRANULARITY, BitSet::LAYER1_GRANULARITY * BitSet::BITS_PER_USIZE);
pub fn layer2_as_slice(&self) -> &[usize]
[src]
Returns the third layer of the bitset as a slice. Each bit in this slice summarizes a
corresponding usize
from layer1
. If usize
is 64 bits, bit 0 will be set if any
Index
es 0-4095 are set, bit 1 will be set if any Index
es 4096-8191 are set, etc.
The slice's length is not guaranteed, except that it will be at least the length needed to
reflect all the 1
s in the bitset.
Example
use hibitset::BitSet; let index: u32 = 12345; let mut bitset = BitSet::new(); bitset.add(index); // layer 2 summarizes multiple indexes per bit, so divide appropriately let slice = bitset.layer2_as_slice(); let bit_index = index as usize / BitSet::LAYER2_GRANULARITY; // map that bit index to a usize in the slice and a bit within that usize let slice_index = bit_index / BitSet::BITS_PER_USIZE; let bit_at_index = bit_index % BitSet::BITS_PER_USIZE; assert_eq!(slice[slice_index], 1 << bit_at_index);
Trait Implementations
impl<T> BitAnd<T> for BitSet where
T: BitSetLike,
[src]
T: BitSetLike,
type Output = BitSetAnd<Self, T>
The resulting type after applying the &
operator.
fn bitand(self, rhs: T) -> Self::Output
[src]
impl<'a, T> BitAnd<T> for &'a BitSet where
T: BitSetLike,
[src]
T: BitSetLike,
type Output = BitSetAnd<Self, T>
The resulting type after applying the &
operator.
fn bitand(self, rhs: T) -> Self::Output
[src]
impl<'a, B> BitAndAssign<&'a B> for BitSet where
B: BitSetLike,
[src]
B: BitSetLike,
fn bitand_assign(&mut self, lhs: &B)
[src]
impl<T> BitOr<T> for BitSet where
T: BitSetLike,
[src]
T: BitSetLike,
type Output = BitSetOr<Self, T>
The resulting type after applying the |
operator.
fn bitor(self, rhs: T) -> Self::Output
[src]
impl<'a, T> BitOr<T> for &'a BitSet where
T: BitSetLike,
[src]
T: BitSetLike,
type Output = BitSetOr<Self, T>
The resulting type after applying the |
operator.
fn bitor(self, rhs: T) -> Self::Output
[src]
impl<'a, B> BitOrAssign<&'a B> for BitSet where
B: BitSetLike,
[src]
B: BitSetLike,
fn bitor_assign(&mut self, lhs: &B)
[src]
impl BitSetLike for BitSet
[src]
fn layer3(&self) -> usize
[src]
fn layer2(&self, i: usize) -> usize
[src]
fn layer1(&self, i: usize) -> usize
[src]
fn layer0(&self, i: usize) -> usize
[src]
fn contains(&self, i: u32) -> bool
[src]
fn get_from_layer(&self, layer: usize, idx: usize) -> usize
[src]
fn is_empty(&self) -> bool
[src]
fn iter(self) -> BitIter<Self> where
Self: Sized,
[src]
Self: Sized,
impl<T> BitXor<T> for BitSet where
T: BitSetLike,
[src]
T: BitSetLike,
type Output = BitSetXor<Self, T>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: T) -> Self::Output
[src]
impl<'a, T> BitXor<T> for &'a BitSet where
T: BitSetLike,
[src]
T: BitSetLike,
type Output = BitSetXor<Self, T>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: T) -> Self::Output
[src]
impl<'a, B> BitXorAssign<&'a B> for BitSet where
B: BitSetLike,
[src]
B: BitSetLike,
fn bitxor_assign(&mut self, lhs: &B)
[src]
impl Clone for BitSet
[src]
impl Debug for BitSet
[src]
impl Default for BitSet
[src]
impl DrainableBitSet for BitSet
[src]
fn remove(&mut self, i: u32) -> bool
[src]
fn drain<'a>(&'a mut self) -> DrainBitIter<'a, Self> where
Self: Sized,
[src]
Self: Sized,
impl Eq for BitSet
[src]
impl<'a> Extend<&'a u32> for BitSet
[src]
fn extend<T>(&mut self, iter: T) where
T: IntoIterator<Item = &'a u32>,
[src]
T: IntoIterator<Item = &'a u32>,
impl Extend<u32> for BitSet
[src]
fn extend<T>(&mut self, iter: T) where
T: IntoIterator<Item = u32>,
[src]
T: IntoIterator<Item = u32>,
impl<'a> FromIterator<&'a u32> for BitSet
[src]
fn from_iter<T>(iter: T) -> Self where
T: IntoIterator<Item = &'a u32>,
[src]
T: IntoIterator<Item = &'a u32>,
impl FromIterator<u32> for BitSet
[src]
fn from_iter<T>(iter: T) -> Self where
T: IntoIterator<Item = u32>,
[src]
T: IntoIterator<Item = u32>,
impl IntoIterator for BitSet
[src]
type Item = <BitIter<Self> as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = BitIter<Self>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
impl<'a> IntoIterator for &'a BitSet
[src]
type Item = <BitIter<Self> as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = BitIter<Self>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
impl Not for BitSet
[src]
type Output = BitSetNot<Self>
The resulting type after applying the !
operator.
fn not(self) -> Self::Output
[src]
impl<'a> Not for &'a BitSet
[src]
type Output = BitSetNot<Self>
The resulting type after applying the !
operator.
fn not(self) -> Self::Output
[src]
impl PartialEq<BitSet> for BitSet
[src]
Auto Trait Implementations
impl RefUnwindSafe for BitSet
impl Send for BitSet
impl Sync for BitSet
impl Unpin for BitSet
impl UnwindSafe for BitSet
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<I> IntoIterator for I where
I: Iterator,
[src]
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
fn into_iter(self) -> I
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,